Release v2.2.2 is EOL. Refer to https://docs.zfsbootmenu.org for current documentation.

UEFI#

This guide can be used to install Void onto a single disk with with or without ZFS encryption.

It assumes the following:

  • Your system uses UEFI to boot

  • Your system is x86_64

  • You will use glibc as your system libc.

  • You're mildly comfortable with ZFS, EFI and discovering system facts on your own (lsblk, dmesg, gdisk, ...)

ZFSBootMenu does not require glibc and is not restricted to x86_64. If you are comfortable installing Void Linux on other architectures or with the musl libc, you can adapt the instructions here to your desired configuration.

Download the latest hrmpf, write it to USB drive and boot your system in EFI mode.

Confirm EFI support:

# dmesg | grep -i efivars
[    0.301784] Registered efivars operations

Configure Live Environment#

Source /etc/os-release#

The file /etc/os-release defines variables that describe the running distribution. In particular, the $ID variable defined within can be used as a short name for the filesystem that will hold this installation.

source /etc/os-release
export ID

Generate /etc/hostid#

zgenhostid -f 0x00bab10c

Define disk variables#

For convenience and to reduce the likelihood of errors, set environment variables that refer to the devices that will be configured during the setup.

For many users, it is most convenient to place boot files (i.e., ZFSBootMenu and any loader responsible for launching it) on the the same disk that will hold the ZFS pool. However, some users may wish to dedicate an entire disk to the ZFS pool or create a multi-disk pool. A USB flash drive provides a convenient location for the boot partition. Fortunately, this alternative configuration is easily realized by simply defining a few environment variables differently.

Verify your target disk devices with lsblk. /dev/sda, /dev/sdb and /dev/nvme0n1 used below are examples.

First, define variables that refer to the disk and partition number that will hold boot files:

export BOOT_DISK="/dev/sda"
export BOOT_PART="1"
export BOOT_DEVICE="${BOOT_DISK}${BOOT_PART}"

Next, define variables that refer to the disk and partition number that will hold the ZFS pool:

export POOL_DISK="/dev/sda"
export POOL_PART="2"
export POOL_DEVICE="${POOL_DISK}${POOL_PART}"

Disk preparation#

Wipe partitions#

zpool labelclear -f "$POOL_DISK"

wipefs -a "$POOL_DISK"
wipefs -a "$BOOT_DISK"

sgdisk --zap-all "$POOL_DISK"
sgdisk --zap-all "$BOOT_DISK"

Create EFI boot partition#

sgdisk -n "${BOOT_PART}:1m:+512m" -t "${BOOT_PART}:ef00" "$BOOT_DISK"

Create zpool partition#

sgdisk -n "${POOL_PART}:0:-10m" -t "${POOL_PART}:bf00" "$POOL_DISK"

ZFS pool creation#

Create the zpool#

zpool create -f -o ashift=12 \
 -O compression=lz4 \
 -O acltype=posixacl \
 -O xattr=sa \
 -O relatime=on \
 -o autotrim=on \
 -o compatibility=openzfs-2.1-linux \
 -m none zroot "$POOL_DEVICE"

Note

The option -o compatibility=openzfs-2.1-linux ensures that the pool is created only with feature flags supported by the current ZFSBootMenu binary release. If you plan on building a custom ZFSBootMenu image that you will keep synchronized with your host, the compatibility option may be omitted.

Binary releases of ZFSBootMenu are generally built with the latest stable version of ZFS. Future releases of ZFSBootMenu may therefore support newer feature sets. Check project release notes prior to updating or removing compatibility options and upgrading your system pool.

Create initial file systems#

zfs create -o mountpoint=none zroot/ROOT
zfs create -o mountpoint=/ -o canmount=noauto zroot/ROOT/${ID}
zfs create -o mountpoint=/home zroot/home

zpool set bootfs=zroot/ROOT/${ID} zroot

Note

It is important to set the property canmount=noauto on any file systems with mountpoint=/ (that is, on any additional boot environments you create). Without this property, the OS will attempt to automount all ZFS file systems and fail when multiple file systems attempt to mount at /; this will prevent your system from booting. Automatic mounting of / is not required because the root file system is explicitly mounted in the boot process.

Also note that, unlike many ZFS properties, canmount is not inheritable. Therefore, setting canmount=noauto on zroot/ROOT is not sufficient, as any subsequent boot environments you create will default to canmount=on. It is necessary to explicitly set the canmount=noauto on every boot environment you create.

Export, then re-import with a temporary mountpoint of /mnt#

zpool export zroot
zpool import -N -R /mnt zroot
zfs mount zroot/ROOT/${ID}
zfs mount zroot/home

Verify that everything is mounted correctly#

# mount | grep mnt
zroot/ROOT/void on /mnt type zfs (rw,relatime,xattr,posixacl)
zroot/home on /mnt/home type zfs (rw,relatime,xattr,posixacl)

Install Void#

Adjust the mirror, libc, and package selection as you see fit.

XBPS_ARCH=x86_64 xbps-install \
  -S -R https://mirrors.servercentral.com/voidlinux/current \
  -r /mnt base-system

Copy our files into the new install#

cp /etc/hostid /mnt/etc

Chroot into the new OS#

xchroot /mnt

Basic Void configuration#

Set the keymap, timezone and hardware clock#

cat << EOF >> /etc/rc.conf
KEYMAP="us"
HARDWARECLOCK="UTC"
EOF
ln -sf /usr/share/zoneinfo/<timezone> /etc/localtime

Configure your glibc locale#

Note

This does not need to be done on musl, as musl does not have system locale support.

cat << EOF >> /etc/default/libc-locales
en_US.UTF-8 UTF-8
en_US ISO-8859-1
EOF
xbps-reconfigure -f glibc-locales

Set a root password#

passwd

ZFS Configuration#

Configure Dracut to load ZFS support#

cat << EOF > /etc/dracut.conf.d/zol.conf
nofsck="yes"
add_dracutmodules+=" zfs "
omit_dracutmodules+=" btrfs "
EOF

Install ZFS#

xbps-install -S zfs

Install and configure ZFSBootMenu#

Set ZFSBootMenu properties on datasets#

Assign command-line arguments to be used when booting the final kernel. Because ZFS properties are inherited, assign the common properties to the ROOT dataset so all children will inherit common arguments by default.

zfs set org.zfsbootmenu:commandline="quiet loglevel=4" zroot/ROOT

Create a vfat filesystem#

mkfs.vfat -F32 "$BOOT_DEVICE"

Create an fstab entry and mount#

cat << EOF >> /etc/fstab
$( blkid | grep "$BOOT_DEVICE" | cut -d ' ' -f 2 ) /boot/efi vfat defaults 0 0
EOF

mkdir -p /boot/efi
mount /boot/efi

Install ZFSBootMenu#

xbps-install -S curl

Fetch a prebuilt ZFSBootMenu EFI executable, saving it to the EFI system partition:

mkdir -p /boot/efi/EFI/ZBM
curl -o /boot/efi/EFI/ZBM/VMLINUZ.EFI -L https://get.zfsbootmenu.org/efi
cp /boot/efi/EFI/ZBM/VMLINUZ.EFI /boot/efi/EFI/ZBM/VMLINUZ-BACKUP.EFI

Configure EFI boot entries#

xbps-install efibootmgr
efibootmgr -c -d "$BOOT_DISK" -p "$BOOT_PART" \
  -L "ZFSBootMenu (Backup)" \
  -l '\EFI\ZBM\VMLINUZ-BACKUP.EFI'

efibootmgr -c -d "$BOOT_DISK" -p "$BOOT_PART" \
  -L "ZFSBootMenu" \
  -l '\EFI\ZBM\VMLINUZ.EFI'

See also

Some systems can have issues with EFI boot entries. If you reboot and do not see the above entries in your EFI selection screen (usually accessible through an F key during POST), you might need to use a well-known EFI file name. See Portable EFI for help with this. Your existing ESP can be used, in place of an external USB drive.

Refer to zbm-kcl.8 and zfsbootmenu.7 for details on configuring the boot-time behavior of ZFSBootMenu.

Prepare for first boot#

Exit the chroot, unmount everything#

exit
umount -n -R /mnt

Export the zpool and reboot#

zpool export zroot
reboot